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PROBLEM OF INCREASING THE SURVIVABILITY

OF TWO-STAGE BALLISTIC GUNS

UDC 533.6Yu. F. Khristenko

The paper proposes methods for increasing the survivability of light-gas guns, including new
designs and nonconventional modes of shot. It is established theoretically and experimentally
that a decrease in the cone angle of the conical adapter to 2.5–3◦ leads to a severalfold increase
in the survivability of the high-pressure chamber. A compound piston with a liquid or gel-like
filler is designed. The mode of shot from a light-gas gun with superlight pistons and without a
diaphragm is justified and tested experimentally. Conical and measuring adapters with liners
made of thermally- and wear-resistant alloys are designed to prevent ablation of the light-gas
gun barrel.

Two-stage, light-gas guns have been widely used in aeroballistic studies and in investigations of high-
velocity interaction in the speed range 2.5–10.0 km/sec [1, 2]. Recently, light-gas guns have been used as
preaccelerators in combined methods of acceleration to attain velocities as high as 16 km/sec [3]. An analysis
of experiments with acceleration velocities higher than 8 km/sec shows that one of the main problems is the
survivability of light-gas guns [4–6]. In solving problems of high-velocity acceleration, it is necessary to seek
a compromise between attainment of the highest speeds of a projectile with the greatest possible weight and
appropriate survivability of the gun. Studies of the survivability of the main units and details of a light-gas
gun with a deformable piston show that the conical adapter and ballistic barrel of the gun frequently get out
of order. The conical adapter undergoes mechanical failure (swelling) even if it is made of two or three layers
fastened together [4], and the ballistic barrel is subjected to thermal erosion [6]. In the present paper, we
propose methods for increasing the survivability of light-gas guns under limiting operating conditions. New
designs and nonconventional operation regimes of light-gas guns are used.

An analysis of the data of [4–6] on the strength properties and survivability of the main units of light-
gas guns shows that a determining factor in the survivability of the high-pressure chamber is the stress that
arises in the plastic piston during its acceleration in the conical segment of the chamber. Using methods
of optimal design of light-gas guns [7] and experimental studies of light-gas guns [4], it is shown that as
the mass of the piston increases, the muzzle velocity of projectiles becomes higher. The mass of the piston
was increased using lead inserts and compound pistons with metal and polyethylene sections [7]. In the
experiments of [5], the metal section was replaced by a fluorine plastic section.

Theoretical and experimental studies of the deformation of a plastic (polyethylene) piston during shot
from a light-gas gun show that maximum stresses in the piston and on the internal surface of the conical
segment of the light-gas gun barrel depend appreciably on the length of the conical segment (cone angle). In
this case, a decrease in the cone angle leads to a decrease in the maximum loads in the high-pressure chamber
passage. In addition, from internal-ballistic calculations for light-gas guns [7] it follows that by decreasing
the cone angle, it is possible to attain the same muzzle velocity at lower maximum pressures on the bottom
plate of the projectile.
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TABLE 1

Shot

parameter

Calculation No.

1 2 3 4 5 6 7 8 9

Powder 6/7 6/7 6/7 6/7 6/7 VT VT VT VT

q, g 0.8 0.5 0.5 0.8 0.5 0.5 0.5 0.4 0.3

ω, g 200 200 205 205 202 170 170 170 175

p0, MPa 1.2 1.2 1.1 1.25 1.1 0.8 0.7 0.6 0.5

Mp, g 225 225 135 205 175 30 30 25 25

pch,max, MPa 192 192 131 183 155 152 151 145 156

pp,max, MPa 3013 3124 2508 2893 2706 1080 1172 1054 1217

pg,max, MPa 1716 1708 1403 1541 1426 992 1068 940 1128

Tg,max, K 2415 2396 2349 2346 2368 2693 2875 2902 3253

ppr,max, MPa 486 334 328 479 335 395 449 339 309

Upr, km/sec 7.99 7.64 8.08 8.05 8.16 8.25 8.61 8.66 9.71

pb, MPa 30 30 70 30 30 1 1 1 1

l, mm 185 185 185 370 370 370 370 370 370

Table 1 lists the main calculated shot parameters under various loading conditions for an LGG-2 light-
gas gun [4] [q is the mass of the accelerated assembly, ω is the mass of the powder charge, p0 is the initial
pressure of the light gas (hydrogen), Mp is the mass of the piston, pch,max is the maximum pressure in the
powder chamber, pp,max is the maximum stress in the piston, pg,max is the maximum pressure of the light
gas, Tg,max is the maximum temperature of the light gas, ppr,max is the maximum pressure on the bottom
plate of the projectile, Upr is the muzzle velocity of the projectile, pb is the boosting pressure, and l is the
length of the cone].

Calculation Nos. 1–3 correspond to the experimental data obtained on a light-gas gun with a conical
segment 185 mm long, and calculation Nos. 4–9 refer to a hypothetical high-pressure chamber with a length
of the conical segment of 370 mm, which is twice that in the first case. A comparison of the calculation results
for calculation Nos. 1, 2, 4, and 5 shows that with the longer adapter, the same velocities can be attained for
much smaller (by 30%) maximum pressures of the light gas, stresses in the piston, and maximum pressures
on the projectile bottom plate. This is typical of “light” projectiles with a relative mass of Cq 6 1 g/cm3

(Cq = q/d3, where d is the bore). This was taken into account in the design of a unified complex (T-110)
of PKh experimental ballistic guns [8]. Thus, a PPKh23/8 light-gas gun incorporated in this complex has a
piston bore D = 23 mm, an 8-mm ballistic bore, a high-pressure chamber with a conical segment 300 mm
long, and a cone angle of 2.85◦. In the light-gas gun described in [4–6], the cone angle is 8◦ or larger. The
manufacture of a high-pressure chamber with a longer conical segment for a small-bore, light-gas gun involves
considerable technological difficulties, Therefore, in a PPKh34/23/8 light-gas gun with an 8-mm ballistic bore
and a 34-mm piston bore, which is incorporated in the T-110 complex, the high-pressure chamber comprises
two conical adapters and a cylindrical insert of 23 mm diameter (Fig. 1).

Another method for decreasing the stress in a piston in its motion in a conical adapter is by changing
the design and material of the piston. Indeed, the losses due to the deformation and friction of the piston,
besides decreasing the survivability, lead to a decrease in the acceleration velocity in the light-gas gun. It
is known that at strain rates typical of light-gas guns with a light piston, the dynamic yield strength of
polyethylene increases markedly. As a result, the initial shape of the piston remains unchanged at pressures
many times higher than the yield strength of polyethylene (15–20 MPa) [9, 10].

The piston design we propose is given in Fig. 2. It consists of two obturators made of polyethylene
and a liquid or gel-like filler occupying the space between them. The filler can be a volatilizing liquid (ether
or alcohol) or a thermally stable lubricant, for example, gun lard. The losses due to deformation and friction
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Fig. 1. Diagram of a light-gas gun with a compound conical adapter: 1) ignition fuse; 2) powder chamber;
3) piston; 4) compression chamber; 5) first section of the conical adapter; 6) cylindrical insert; 7) second
section of the conical adapter; 8) projectile; 9) barrel.

Fig. 2. Diagram of a compound piston: 1) compression chamber; 2) obturators; 3) fluid filler.

of this piston are much smaller than those for a monolithic piston from polyethylene, and this increases the
survivability of the light-gas gun and the acceleration velocity.

These results were taken into account in designing a PPKh23/8 light-gas gun in which the survivability
of the high-pressure chamber is more than 100 shots in operation regimes with an acceleration velocity higher
than 8 km/sec. In such regimes, the survivability of the barrel is, on the average, 20 shots. After that, the
barrel is reclaimed by repeated honing, which increases the bore by 0.1–0.2 mm.

An analysis of data obtained from tests of an LGG-2 light-gas gun [4] and a PPKh23/8 light-gas gun
shows that when a relatively heavy piston is used, the muzzle velocity of a projectile increases insignificantly
with decrease in its mass, and, in some cases, even decreases. This is explained by the fact that a “light”
projectile “escapes” from the piston, and the hydroeffect [1] on the muzzle velocity of the projectile becomes
weak or is absent. The use of relatively heavy pistons implies the obligatory use of a diaphragm with a
breaking pressure of about 60–70 MPa. A PPKh23/8 light-gas gun uses a diaphragm made of 12Kh18N10T
stainless steel 2 mm thick, which breaks at a pressure of about 200 MPa. At the moment of breaking, the
projectile is subjected to peak loads, which sometimes lead to fracture of the bottom plate. In addition,
when the maximum temperature of the light gas increases and ablation traces appear on the surface of the
ballistic bore, precisely the surface of the diaphragm is subjected to maximum ablation of the metal. Thus,
an increase in the mass of the piston leads to a decrease in the survivability of the high-pressure chamber.

In the present work, we attempted to determine acceleration modes for “light” projectiles (Cq 6
1 g/cm3). An analysis of the results of a large series of calculations shows that, in this case, modes of shot
with light pistons and without a diaphragm are most reasonable. As compared to conventional acceleration
modes [1, 4–6], the main features of the proposed modes are as follows:

— the powder charge is increased by 10–20%, a finer fast-burning powder is used (for an LGG-2
light-gas gun, 6/7 powder is replaced by 4/7 powder or VT powder);

— the mass of the piston decreases by a factor of 2 or 3, and its relative mass is Cq,p =
Mp/D

3 ≈ 1.5–2.5 g/cm3, whereas in experiments on a PPKh23/8 light-gas gun, we used pistons with
Cq,p ≈ 4.5–5.5 g/cm3 (the pistons used in the LGG-2 had a relative mass of Cq,p ≈ 5–8 g/cm3);

— the initial pressure of the light gas is decreased by a factor of 1.5–2.5 (from 1.2–1.8 to 0.3–0.8 MPa).
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TABLE 2

ω, Mp, pch,max, pp,max, Tg,max, ppr,max, Upr,

g g MPa MPa K MPa km/sec

55 25 151 727 3633 275 8.29

60 23 186 864 4040 331 8.84

60 25 191 940 4218 355 9.05

60 28 199 1041 4442 389 9.32

65 23 236 1081 4617 419 9.58

Tests showed that, using a bottom plate of a rather rigid material (Phenylon, Graphilon, or polycar-
bonate), it is possible to attain a projectile boosting pressure higher than the initial light-gas pressure in the
compression chamber and to ensure hermetization of the compression chamber when it is filled with the light
gas. This simplifies the design of the boosting unit (see Fig. 1).

Calculations of shot parameters for the LGG-2 with a light piston and without a diaphragm are given
in Table 1 (calculation Nos. 6–9). The absence of a diaphragm was modeled by specifying a boosting pressure
of pb = 1 MPa. The calculations show that with variation in the static friction force over a broad range,
the shot parameters practically do not vary. Thus, variation of pb from 1 to 10 MPa changed significantly
only the maximum pressure on the projectile bottom plate (by 5%). From the calculation results it follows
that, in this case, a muzzle velocity of about 8 km/sec for a projectile with a mass of 0.5 g can be obtained
at maximum pressures of the light gas lower than 1000 MPa, while for heavy pistons and diaphragms, the
maximum pressures are 1700–2000 MPa. Accordingly, the maximum stresses in the piston decrease during
its deceleration in the cone. For projectiles with masses of 0.3 and 0.4 g, the muzzle velocity can be increased
to 9 km/sec or more.

Table 2 gives calculations of shot parameters for a PPKh23/8 light-gas gun with a light piston and
without a diaphragm. The calculations were performed for VT powder and a projectile with a mass of
q = 0.3 g and an initial light-gas pressure of p0 = 0.7 MPa. The calculation results show that in these
shooting modes for this light-gas gun, it is also possible to reach velocities of about 9 km/sec for a projectile
with a mass of 0.3–0.5 g with reasonable survivability of the main units of the light-gas gun. At the initial
stage of investigation, we used the calculation program of [11] and then the calculation program of [7], in
which the powder combustion law was modified according to [9] and the law of motion of the piston was
taken from [10].

The mode of shot without a diaphragm, as proposed above, was tested experimentally on a PPKh23/8
light-gas gun. The results of the tests are given in Table 3 (lb is the length of the ballistic barrel), and
they confirm the serviceability of the light-gas gun in this mode of shot and the possibility of attaining
velocities of about 7 km/sec in a trouble-free operation regime. The decrease in the velocity in experiment
No. 80 is explained by break of the light gas through the joint. In this connection, the joint was modified by
replacing the flat sealing ring from 12Kh18N10T stainless steel with an elastic sealing ring from beryllium
bronze (Fig. 3). The obturator ring is manufactured so that its height is 0.3 mm larger than the height of
the shoulder on the barrel against which the ring is butted up. In this case, after the barrel is joined to the
conical adapter, the ring is in a compressed state and keeps track of the displacement of the barrel relative to
the conical adapter during shot, thus ensuring obturation of the boosting unit. In addition, on the internal
surface of the ring there is a conical groove. Reaching the groove, the expanding light gas spreads the ring and
ensures additional self-obturation by the principle of lenticular sealing. Subsequent experiments confirmed
the reliability of obturation of this joint, and, moreover, one ring can be used several times.

In the tests, computed acceleration velocities (8–9 km/sec) were not attained, and this required further
studies to determine the main regularities of the shot process and to validate the physicomathematical models
used in the calculations [9, 10].
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TABLE 3

Experiment q, ω, Mp, p0, lb, Upr,

number g g g MPa m km/sec

78 0.40 50 20 0.9 2.11 6.32

79 0.39 53 20 0.9 2.11 6.50

80 0.41 58 20 0.9 2.11 5.68

81 0.35 58 20 0.9 2.11 6.88

82 0.35 63 20 0.11 2.11 6.75

83 0.29 63 20 0.11 2.11 6.93

84 0.29 63 19 0.11 2.11 6.98

85 0.32 66 23 0.12 2.11 6.91

86 0.29 66 18.5 0.11 2.47 7.18

Fig. 3. Diagram of the joint: 1) conical adapter;
2) elastic obturator ring; 3) barrel.

In the experiments described above, the decrease in the acceleration velocity may be caused, in par-
ticular, by ablation of the internal surface of the conical adapter channel and the barrel, as a result of which
the light gas becomes laden with metal particles. The calculations of [6, 12] show that in light-gas guns, the
internal surface temperature of the conical adapter can exceed the melting point of steel.

Various methods have been proposed to apply thermal- and wear-resistant coatings to the thermally
stressed segments of the light-gas gun barrel, in particular, the gas-phase deposition of tungsten [13] and
chromium plating. At present, however, there are no elaborate technologies for applying protective coatings
to the thermally stressed segments of the light-gas gun barrel, in particular for light-gas guns of small diameter.
At the same time, the calculations of [6, 12] show that only the internal surface of the conical adapter liner
and the initial section of the barrel (segment with a length of 20–30 diameters) are subjected to intense
heating and melting. It is suggested, therefore, that the conical adapter liners for light-gas guns of small
diameter be made of alloys whose properties ensure the required strength of the conical adapter and prevent
melting of the liner internal surface.

In the model gun of [9], the pressure and time of diaphragm rupture were determined using a measuring
adapter, which was placed between the conical adapter and the measuring fuse. Later, these adapters were
also used during shot. It was established experimentally that, in this case, the decrease in the acceleration
velocity is about 1%. If this adapter has a liner made of a thermally stable alloy, for example W–Ni–Fe
alloy, this prevents ablation of the barrel or decreases it to a great extent. The strength properties of some
alloys compares with those of the best gun steels. Moreover, the thermal conductivity of W–Ni–Fe alloy is
severalfold higher than that of steel. This facilitates rapid supply of heat into the liner body and a decrease
in the liner surface temperature. The boosting unit design for such a light-gas gun is given in Fig. 4.

It should be noted that ablation of the conical adapter channel and the barrel does not always lead
to a decrease in the projectile velocity since ablation begins after the projectile has gained a considerable
velocity. The effect of loading of the light-gas stream with metal particles on the projectile velocity was
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Fig. 4. Diagram of the boosting unit: 1) conical adapter; 2) conical adapter liner (W–Ni–Fe);
3) measuring adapter; 4) measuring adapter liner (W–Ni–Fe); 5) T10000 pressure gauge; 6) barrel;
7) projectile; 8) diaphragm.

examined using the following procedure. Once the melting point of steel is reached, a characteristic is issued
downstream from a relevant point in the calculation domain of the light-gas. If the characteristic catches up
with the projectile when the latter moves in the barrel, the loading of the stream with metal particles affects
the muzzle velocity of the projectile. Otherwise, ablation of the barrel does not influence the muzzle velocity.
The calculations show that for “light” projectiles, the second case is typical.

It is possible that there is another mechanism of erosion of the barrel bore. Thus, according to [14],
bore erosion can be caused by a considerable decrease in the strength of steel at temperatures well below the
melting point. In this case, bore erosion begins much earlier, and loading of the light gas with metal leads to
a decrease in the muzzle velocity of the projectile.

The author thanks M. S. Baryshev and Yu. P. Khomenko for useful discussions and assistance in the
experiments and V. V. Zharovtsev for providing the calculation program.
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